Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Ивановский государственный политехнический университет» (ИВГПУ)

УТВЕРЖДАЮ

Проректор по науке и

технологическому предпринимательству

Т.Н. Новосад 20*23* года

«15» malf

ПРОГРАММА-МИНИМУМ

кандидатского экзамена по научной специальности **2.6.13 «Процессы и аппараты химических технологий»** (технические науки)

Введение

Настоящая программа кандидатского экзамена разработана на основе Паспорта научной специальности 2.6.13. «Процессы и аппараты химических технологий».

Кандидатский экзамен по специальности проводится очно в устной форме и с использованием дистанционных образовательных технологий.

Темы и вопросы представлены ниже.

Программа разработана кафедрой естественных наук и техносферной безопасности

1. Краткая характеристика тематики кандидатского экзамена

Раздел 1. Системный анализ процессов химической технологии

Основные принципы системного анализа; взаимосвязь явлений в отдельных процессах и аппаратах; иерархия явлений и их соподчиненность в изучении процессов и аппаратов; иерархическая структура химического производства; взаимовлияние аппаратов. Математическое моделирование как современный метод анализа и синтеза химико-технологических процессов и Сущность химико-технологических систем. цели математического И моделирования объектов химической технологии, формы представления процессе (управления, регрессии, информации дифференциальные O интегральные уравнения, уравнения, конечные И конечно-разностные уравнения). Постановка задачи математического описания процесса. Два подхода к составлению математической модели процесса: детерминированный и стохастический. Их возможности и сферы использования. Теория подобия и анализ размерностей. Подобные преобразования, физическое моделирование, метода характеристических масштабов. Основы теории переноса количества движения, энергии, массы; гидродинамика и гидродинамические процессы: основные уравнения движения жидкостей, гидродинамическая структура потоков, сжатие и перемешивание газов, разделения неоднородных жидких и газовых систем, перемешивание в жидких средах.

Раздел 2. Типовые модели структуры потоков в аппаратах непрерывного действия

Модель идеального смешения. Вывод дифференциального уравнения модели. Вид функции отклика модели на стандартные возмущения. Частотные характеристики модели. Условия реализуемости принятых допущений в приложении к аппаратам химической технологии. Модель идеального вытеснения. Вывод дифференциального уравнения модели. Передаточная функция. Вид функции отклика и частотные характеристики модели. Сравнительная оценка идеальных моделей. Энтропийная оценка меры упорядоченности движения частиц. Каноническое и микроканоническое распределение Гиббса. Фактор распределения как выражение второго закона термодинамики. Учет рассеяния по времени пребывания. Ячеечная модель. Свойство детектируемости. Частотные характеристики и вид функции отклика. Вывод уравнения предельного перехода к модели идеального вытеснения.

Диффузионная модель. Комбинированные (многопараметрические) модели. Байпасирование. Последовательное и параллельное включение ячеек идеального смешения и вытеснения. Модель с застойной зоной.

Раздел 3. Течение жидкости в пленках, трубах, струях и пограничных слоях

Уравнения и граничные условия гидродинамики. Течение, вызванное вращением диска. Гидродинамика тонких стекающих пленок. Струйные течения. Ламинарное течение в трубах различной формы. Продольное обтекание плоской пластины. Пограничный слой. Движение частиц, капель, пузырей в жидкости. Общее решение уравнений Стокса в осесимметричном случае. Обтекание сферической частицы, капли и пузыря поступательным стоксовым потоком. Сферические частицы в поступательном потоке при умеренных и больших числах Рейнольдса. Сферические капли и пузыри в поступательном потоке при умеренных и больших числах Рейнольдса. Обтекание сферической частицы, капли и пузыря сдвиговым потоком. Обтекание несферических твердых частиц. Обтекание цилиндра (плоская задача). Обтекание деформированных капель и пузырей. Стесненное движение частиц.

Раздел 4. Химическая термодинамика

Система. Состояние системы. Уравнения состояния. Энергия. Работа. Теплота. Нулевой и первый законы термодинамики. Основные законы термохимии. О равновесных и обратимых процессах. Второй и третий законы термодинамики. Линейная термодинамика в задачах химии и химической технологии. Уравнения сохранения. Диссипативная функция многофазной гетерогенной среды. Соотношение взаимности Онзагера. Потоки массы и тепла в сплошной фазе. Массоперенос в химико-технологических системах с учетом наличия межфазных поверхностей. Вариационный принцип минимума производства энтропии. Принцип минимума приведенных термодинамических потоков. Определение средней толщины пленки в дисперсно-кольцевых режимах течения. Неравновесная термодинамика необратимых процессов в химической технологии. Термодинамическая функция Ляпунова вдали от равновесия. Метод термодинамических функций Ляпунова для выявления химических осцилляторов. Современное состояние проблемы колебательных реакций в химии. Эксергия, эксергетический метод анализа химикоинформационно-термодинамический технологических систем: принцип; оптимизации использование методов при создании энергоресурсосберегающих производств (прямые, декомпозиционные, структурнодекомпозиционные методы).

Раздел 5. Массо- и теплоперенос в пленках жидкости, трубах и плоских каналах

Уравнение и граничные условия теории конвективного тепло- и массопереноса. Диффузия к вращающемуся диску. Теплоперенос к плоской

пластине. Массоперенос в пленках жидкости. Тепло- и массоперенос при ламинарном течении в круглой трубе. Тепло- и массоперенос при ламинарном течении в плоской трубе. Предельные числа Нуссельта при ламинарном течении жидкостей по трубам различной формы. Массо- и теплообмен частиц, капель и пузырей с потоком. Метод асимптотических аналогий в теории массои теплопереноса. Внутренние задачи о теплообмене тел различной формы. Массо- и теплообмен частиц различной формы с неподвижной средой. в поступательном потоке при малых числах Массоперенос в линейном сдвиговом потоке при малых числах Пекле. Массообмен частиц и капель с потоком при больших числах Пекле (теория диффузионного пограничного слоя). Диффузия к сферической частице, капле и пузырю в поступательном потоке при различных числах Пекле и Рейнольдса. Диффузия к сферической частице, капле и пузырю. В линейном сдвиговом потоке при малых числах Рейнольдса и любых числах Пекле. Диффузия к сфере в поступательно-сдвиговом потоке и потоке с параболическим профилем.

Раздел 6. Массообмен, осложненный поверхностной или объемной химической реакцией

Массоперенос, осложненный поверхностной химической реакцией. Диффузия к вращающемуся диску и плоской пластине при протекании объемной реакции. Внешние задачи массообмена частиц, капель и пузырей с потоком при различных числах Пекле и наличии объемной химической реакции. Внутренние задачи массопереноса при наличии объемной химической реакции. Нестационарныймассообмен с объемной реакцией. Гидродинамика, массо- и теплообмен в неньютоновских жидкостях. Реологические модели неньютоновских несжимаемых жидкостей. Движение пленок неньютоновских жидкостей. Движение епленок неньютоновских жидкостей. Движение пленок неньютоновских трубам и каналам. Теплоперенос в плоском канале и круглой трубе (с учетом диссипации). Гидродинамический тепловой взрыв в неньютоновских жидкостях. Обтекание плоской пластины степенной жидкостью. Затопленная струя степенной жидкости. Движение частиц, капель и пузырей в степенной жидкости.

Раздел 7. Элементы механики твердых дисперсных сред в процессах химической технологии

Структура и структурные связи твердых дисперсных сред. Понятие форм и размеров твердых частиц, гранулометрического состава, сыпучести, сил взаимодействия частицами. Реологические между свойства материалов, контактные силы внешнего трения и адгезионные свойства сыпучих материалов. Движение ожиженных твердых дисперсных систем. Псевдоожиженные слои. Процессы тепло-И массопереноса псевдоожиженных слоях. Механические процессы. Процессы измельчения и измельчающие машины. Классификация процессов и машин. Типы дробилок (щековые, конусные, валковые, молотковые и роторные). Типы мельниц (барабанные – центробежные и вибрационные, ударного действия и др.). Смесители сыпучих материалов, кинетика процессов смешения.

Раздел 8. Тепловые процессы

процессов. Основные уравнения Классификация используемых аппаратов. Теплообменники с передачей тепла через стенку. Кипятильники. процесса. Объекты Основные переменные сосредоточенными c распределенными параметрами. Примеры. Теплообменники Теплообменники с идеальной изоляцией, теплообменники с потерями тепла через стенку. Математические модели кожухотрубных теплообменников. Выпарные аппараты. Основные уравнения. Математическая однокорпусной и трехкорпусной установки. Теплообмен излучением. Законы теплового излучения. Теплообмен излучением между поверхностями твердых тел, между газом и твердой поверхностью.

Раздел 9. Диффузионные процессы

Математическое описание равновесия в многокомпонентных системах. Термодинамика равновесных и неравновесных состояний. Математическое описание процессов диффузии. Однофазная неподвижная среда. Стационарная диффузия в движущихся средах. Диффузия в многокомпонентных системах. Диффузионный потенциал. Массопередача в диффузионных процессах. Пленочные Модели массопередачи. распылительные И колонны. Математические модели аппаратов с поверхностью контакта, образующейся в процессе движения потоков. Модели тарельчатых колонн. Модели насадочных колонн. математических Деформация моделей при гидродинамических режимов. Математическая модель эмульгационных колонн. Модели пульсационных колонн. Модели ротационных аппаратов.

Раздел 10. Математические модели сушильных установок

Кинетика сушки. Контактные сушилки. Сушилки со стационарным слоем. Сушилки с псевдоожиженным и движущим слоем. Особенности математического описания сушилок.

Раздел 11. Математические модели кристаллизационных установок Описание роста кристаллов и зародышеобразования. Типы используемых кристаллизаторов. Математические модели кристаллизаторов различного типа.

Раздел 12. Математические модели процессов разделения

Равновесие и массопередача в системах жидкость-жидкость. Типы используемых экстракционных аппаратов. Математические модели колонных экстракторов. Ректификационные и абсорбционные аппараты. Описание равновесия в системах жидкость-пар, жидкость-газ. Типы ректификационных и абсорбционных аппаратов, их математическое описание. Математические модели мембранных установок. Общая характеристика мембранных способов разделения смесей. Их классификация. Виды мембран. Описание процесса переноса в мембранах. Математические модели фильтрационных установок, установок обратного осмоса, первапорационных установок.

Раздел 13. Гомогенные химические реакторы

Гомогенные изотермические реакторы. Классификация реакторов по гидродинамическому признаку. Реактор периодического действия. Проточный реактор с мешалкой. Каскад реакторов идеального смешения. Оптимальное соотношение объемов реакторов в каскаде. Реактор с продольным перемешиванием потока (ламинарный и турбулентный режим). Выбор типа реактора с учетом селективности реакции. Микро- и макросмешение в реакторах. Расчет реактора при произвольном распределении и времени пребывания реагирующей смеси. Комбинированные модели реакторов. Примеры построения математических моделей и расчет некоторых типов Фотохимические промышленных реакторов. реакторы. Гомогенные неизотермические реакторы. Классификация реакторов по энергетическому и политропические признаку. Адиабатические реакторы. Сравнение эффективности адиабатических и изотермических реакторов. Адиабатические политропические продольными реакторы перемешиваниями. c Комбинированные модели неизотермических реакторов. Оптимальные профили температур в каскаде реакторов и трубчатом политропическом реакторе. Оптимизация трубчатого реактора с промежуточным вводом холодной реагирующей смеси. Автотермические реакторы. Устойчивость работы адиабатических политропических реакторов. Взаимосвязь И устойчивости и селективности. Примеры построения математических моделей и расчета некоторых типов промышленных неизотермических реакторов.

Раздел 14. Гетерогенные химические реакторы

Гетерогенные каталитические реакторы, классификация каталитических реакторов по конструктивному и гидродинамическим признакам. Одно- и многослойные реакторы стационарным слоем катализатора. co Квазигомогенная и гетерогенная модели. Горячие точки в реакторе со стационарным слоем катализатора. Оптимизация многослойных каталитических реакторов с промежуточным вводом холодной реагирующей Определение продольного радиального перемешивания И адиабатических реакторах со стационарным слоем катализатора. Учет падения активности катализатора и изменение селективности. Устойчивость реактора

катализатора выбор стационарным слоем И диаметра Автотермические каталитические реакторы. Реакторы с псевдоожиженным слоем катализатора. Двухфазная и трехфазная модели реактора. Реакторы с движущимся слоем катализатора. Учет изменения активности катализатора в реакторах с псевдоожиженным и движущимся слоем катализатора. Понятие о многофазных каталитических реакторах. Примеры построения математических моделей расчета некоторых типов промышленных каталитических реакторов. Газожидкостные и жидкость-жидкостные реакторы. Классификация по конструктивному и гидродинамическим признакам. Реактор с мешалкой. Тарельчатые и насадочные реакторы. Модель идеального вытеснения в газовой и жидкой фазах. Симметричные и асимметричные ячеечные модели с образованием твердой фазы. Особенности составления математической модели многофазного реактора. Примеры составления математических моделей и расчета некоторых типов газожидкостных реакторов. Реакторы для проведения процессов в системах газ-твердое. Классификация промышленных реакторов по конструктивному и гидродинамическому признакам. Модели реакторов с твердой фазой. Пример составления математических моделей и расчета реакторов для окисления серного колчедана и извлечения металлов из руд.

2. Перечень вопросов к кандидатскому экзамену

Билет №1

- 1. Основные принципы системного анализа; взаимосвязь явлений в отдельных процессах и аппаратах; иерархия явлений и их соподчиненность в изучении процессов и аппаратов; иерархическая структура химического производства; взаимовлияние аппаратов.
- 2. Состояние системы. Уравнения состояния. Энергия. Работа. Теплота. Нулевой и первый законы термодинамики. Основные законы термохимии.
 - 3. Гидродинамика, массо- и теплообмен в неньютоновских жидкостях.

Билет №2

- 1. Математическое моделирование как современный метод анализа и синтеза химико-технологических процессов и химико-технологических систем. Сущность и цели математического моделирования объектов химической технологии, формы представления информации о процессе.
- 2. Второй и третий законы термодинамики. Линейная термодинамика в задачах химии и химической технологии.
- 3. Структура и структурные связи твердых дисперсных сред. Понятие форм и размеров твердых частиц, гранулометрического состава, сыпучести, сил взаимодействия между частицами.

Билет №3

- 1. Постановка задачи математического описания процесса. Два подхода к составлению математической модели процесса: детерминированный и стохастический. Их возможности и сферы использования.
- 2. Неравновесная термодинамика необратимых процессов в химической технологии. Термодинамическая функция Ляпунова.
- 3. Реологические свойства сыпучих материалов, контактные силы внешнего трения и адгезионные свойства сыпучих материалов.

Билет №4

- 1. Теория подобия и анализ размерностей. Подобные преобразования, физическое моделирование, метода характеристических масштабов.
- 2. Уравнение и граничные условия теории конвективного тепло- и массопереноса.
- 3. Математические модели кожухотрубных теплообменников. Выпарные аппараты. Основные уравнения.

Билет №5

- 1. Модель идеального смешения. Вывод дифференциального уравнения модели. Вид функции отклика модели на стандартные возмущения. Частотные характеристики модели. Условия реализуемости принятых допущений в приложении к аппаратам химической технологии. Сравнительная оценка идеальных моделей.
- 2. Эксергия, эксергетический метод анализа химико-технологических систем; информационно-термодинамический принцип; использование методов оптимизации при создании энерго- и ресурсосберегающих производств.
- 3. Псевдоожиженные слои. Процессы тепло- и массопереноса в псевдоожиженных слоях..

Билет №6

- 1. Модель идеального вытеснения. Вывод дифференциального уравнения модели. Передаточная функция. Вид функции отклика и частотные характеристики модели. Сравнительная оценка идеальных моделей.
- 2. Гидродинамика тонких стекающих пленок. Струйные течения. Ламинарное течение в трубах различной формы. Продольное обтекание плоской пластины. Пограничный слой.
- 3. Теплообмен излучением. Законы теплового излучения. Теплообмен излучением между поверхностями твердых тел, между газом и твердой поверхностью.

Билет №7

- 1. Энтропийная оценка меры упорядоченности движения частиц. Каноническое и микроканоническое распределение Гиббса. Фактор распределения как выражение второго закона термодинамики.
- 2. Массоперенос в пленках жидкости. Тепло- и массоперенос при ламинарном течении в круглой трубе. Тепло- и массоперенос при ламинарном течении в плоской трубе. Предельные числа Нуссельта при ламинарном течении жидкостей по трубам различной формы.
- 3. Математические модели мембранных установок. Общая характеристика мембранных способов разделения смесей. Их классификация. Виды мембран. Описание процесса переноса в мембранах.

Билет №8

- 1. Ячеечная модель. Свойство детектируемости. Вывод уравнения предельного перехода к модели идеального вытеснения. Диффузионная модель.
- 2. Метод асимптотических аналогий в теории массо- и теплопереноса. Внутренние задачи о теплообмене тел различной формы.
- 3. Математическое описание процессов диффузии. Диффузия в многокомпонентных системах. Диффузионный потенциал. Массопередача в диффузионных процессах. Модели массопередачи.

Билет №9

- 1. Комбинированные (многопараметрические) модели. Байпасирование. Последовательное и параллельное включение ячеек идеального смешения и вытеснения. Модель с застойной зоной.
- 2. Массо- и теплообмен частиц различной формы с неподвижной средой. Массоперенос в поступательном потоке и в линейном сдвиговом потоке при малых числах Пекле.
- 3. Математические модели аппаратов с поверхностью контакта, образующейся в процессе движения потоков.

Билет №10

- 1. Уравнения и граничные условия гидродинамики.
- 2. Внешние задачи массообмена частиц, капель и пузырей с потоком при различных числах Пекле и наличии объемной химической реакции. Внутренние задачи массопереноса при наличии объемной химической реакции.
- 3. Типы ректификационных и абсорбционных аппаратов, их математическое описание.

3. Основная литература

- 1. Касаткин, А.Г. Основные процессы и аппараты химической технологии / А.Г. Касаткин. М.: ООО «ИД Альянс», 2009. 753 с.
- 2. Процессы и аппараты химической технологии: учеб. пособие для вузов / [А.А. Захарова, Л.Т. Бахшиева, Б.П. Кондауров и др.]; под ред. А.А. Захаровой. М.: Издательский центр «Академия», 2006. 528 с.
- 3. Комиссаров, Ю.А. Процессы и аппараты химической технологии: учеб.пособие для вузов (Гриф УМО РФ) / Ю.А. Комиссаров, Л.С. Гордеев, Д.П. Вент. М.: Химия, 2011. 1211с.
- 4. Романков, П.Г. Методы расчета процессов и аппаратов химической технологии (примеры и задачи): учеб. пособие для вузов / П.Г. Романков, В.Ф. Фролов, О.М. Флисюк. СПб.: Химиздат, 2009. 544 с.
- 5. Шмитько, Е.И. Процессы и аппараты технологии строительных материалов и изделий: учеб. пособие / Е.И. Шмитько. СПб.: Проспект Науки, 2010. 736с/. 2010
- 6. Афанасьева, Т.А. Надежность химико-технологических производств / Афанасьева Т.А., Блиничев В.Н.; Иван. гос. хим.-технол. ун-т: монография Иваново, 2007. 199с.

4. Дополнительная литература

- 1. Рудобашта, С.П. Диффузия в химико-технологических процессах: (Гриф МО РФ) / С.П. Рудобашта, Э.М. Карташов. 2-е изд., перераб. и доп. М.: КолоС, 2010. 478с.
- 2. Основы проектирования химических производств: учебник/ С. И. Дворецкий, Д. С. Дворецкий, Г.С. Кормильцин, А.А. Пахомов. Москва: Издательский дом «Спектр», 2014. 356 с.
- 3. Федосов, С.В. Моделирование и расчет систем утилизации теплоты уходящих газов в высокотемпературных процессах строительной индустрии /С.В. Федосов, Н.Н. Елин, В.Е. Мизонов; ГОУ ВПО "Иван.гос.архит.-строит.ун-т". Иваново, 2010. 268с.
- 4. Алоян, Р.М. Теоретические основы математического моделирования механических и тепловых процессов в производстве строительных материалов: монография /Р.М. Алоян, С.В. Федосов, В.Е. Мизонов; Иван.гос.архит.-строит.ун-т; ИГЭУ. Иваново, 2011. 256 с.
- 5. Кафаров, В.В. Анализ и синтез химико-технологических систем: учебник для вузов / В.В. Кафаров, В.П. Мешалкии. М.: Химия, 1991. 432 с.